首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23202篇
  免费   1636篇
  国内免费   3739篇
  2024年   25篇
  2023年   531篇
  2022年   572篇
  2021年   786篇
  2020年   872篇
  2019年   1204篇
  2018年   984篇
  2017年   947篇
  2016年   967篇
  2015年   783篇
  2014年   1291篇
  2013年   2276篇
  2012年   839篇
  2011年   1304篇
  2010年   897篇
  2009年   1276篇
  2008年   1343篇
  2007年   1278篇
  2006年   1248篇
  2005年   1049篇
  2004年   937篇
  2003年   816篇
  2002年   684篇
  2001年   513篇
  2000年   462篇
  1999年   414篇
  1998年   341篇
  1997年   311篇
  1996年   321篇
  1995年   328篇
  1994年   307篇
  1993年   278篇
  1992年   305篇
  1991年   237篇
  1990年   206篇
  1989年   160篇
  1988年   160篇
  1987年   156篇
  1986年   130篇
  1985年   155篇
  1984年   170篇
  1983年   90篇
  1982年   136篇
  1981年   93篇
  1980年   95篇
  1979年   69篇
  1978年   45篇
  1977年   47篇
  1976年   48篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
91.
Individual cuttlefish, octopus and squid have the versatile capability to use body patterns for background matching and disruptive coloration. We define—qualitatively and quantitatively—the chief characteristics of the three major body pattern types used for camouflage by cephalopods: uniform and mottle patterns for background matching, and disruptive patterns that primarily enhance disruptiveness but aid background matching as well. There is great variation within each of the three body pattern types, but by defining their chief characteristics we lay the groundwork to test camouflage concepts by correlating background statistics with those of the body pattern. We describe at least three ways in which background matching can be achieved in cephalopods. Disruptive patterns in cuttlefish possess all four of the basic components of ‘disruptiveness’, supporting Cott''s hypotheses, and we provide field examples of disruptive coloration in which the body pattern contrast exceeds that of the immediate surrounds. Based upon laboratory testing as well as thousands of images of camouflaged cephalopods in the field (a sample is provided on a web archive), we note that size, contrast and edges of background objects are key visual cues that guide cephalopod camouflage patterning. Mottle and disruptive patterns are frequently mixed, suggesting that background matching and disruptive mechanisms are often used in the same pattern.  相似文献   
92.
Summary The development ofGasteria verrucosa ovules and seeds seems to follow a pattern of growth in which the majority of carbohydrates is first used in the sporophytic tissue (nucellus, integuments, and arillus) around the gametophyte-derived cells. After fertilization the carbohydrates are used for further development of the arillus and seed coat. During the next stage carbohydrates are directed to develop the endosperm, followed by carbohydrate investment in the developing embryo and in storage products. This utilization pattern is deducted from a localization study on sucrose synthase and invertase. These two enzymes break down imported sucrose and are in that perspective used as markers for carbohydrate transport since diffusion is expected to be induced towards cells and tissues with high sucrose-hydrolyzing activities.  相似文献   
93.
We studied the impulse activity of neurons of the basal and lateral amygdalar nuclei generated when experimental animals (rats) performed fast stereotyped food-procuring movements by the forelimb. Within the basolateral amygdala, there are neurons whose activity is related to different stages of getting off the food, and according to the characteristics of their spiking these neurons should be divided into a number of subpopulations. Activation forestalling the movement initiation by 0.5-1.0 sec was observed in most neurons of the basolateral amygdala; this is considered a manifestation of excitation related to a motivation component of the food-procuring behavior. Activation of amygdalar neurons following movement initiation can result from generation in this structure of additional excitation necessary for successful performance of a complete food-procuring motor cycle.  相似文献   
94.
95.
96.
97.
The CNS (central nervous system) is unquestionably the central organ that regulates directly or indirectly all physiological systems in the mammalian body. Yet, when considering the defence of the CNS from pathogens, the CNS has often been considered passive and subservient to the pro-inflammatory responses of the immune system. In this view, neuroinflammatory disorders are examples of when the tail (the immune system) wags the dog (the CNS) to the detriment of an individual''s function and survival.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号